
eOmputer-Science

No-te on Coridhitiom Cominliati"I~n Standard ML1

Nicholas Haines Edoardo Biagioni Robert Hiarper
mom Brian G. Mimnes

June 1993
CMU-CS-93. 11

TIC
ELECTE f

00..7733

%goo~~OO



Note on Conditioual Compilation in Standard ML

Nicholas Haines Edoardo Biagioni Robert Harper
Brian G. Milnes

June 1993

CMU-CS-93-172

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Also published as Fox Memorandum CMU-CS-FOX-93-02

Abstract

In the Fox project we make frequent use of conditional code within Standard ML functors: code
which depends on the functor arguments. The canonical example is instrumentation code for testing
or debugging, only present when flags in the functor arguments are set. We would like the object
code of instantiations of these functors to be as efficient as possible, i.e., to omit the code when
the argument flags are not set. This note considers compilation techniques to achieve this goal,
and code styles which do well in the absence of such techniques.

Authors' electronic mail addresses are:
Nicholas.HainesEcs.cuu.edu, Edoardo.Biagionifcs.cuu.odu, Robert.Harperlcs. cu.edu, and
Brian. Nilnes6cs. cau. edu.

This research was sponsored by the Defense Advanced Research Projects Agency, CSTO, under the title "The Fox
Project: Advanced Development of Systems Software", ARPA Order No. 8313, issued by ESD/AVS under Contract
No. F19628-91-C-0168.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government.



Keywords: Standard ML, modules, functors, conditional compilation, code style, optimizing
compilers



1 Introduction

This note discusses the issue of conditional code within functors in Standard ML[4]; i.e., code
paths which depend on the functor arguments. The canonical example is debugging or testing
code, which is included or excluded depending on a boolean flag in the functor arguments:1

[a] functor F (val debug bool) =

struct

fun f a=
if debug then el

else e2

end

structure Debug = F(val debug = true)

structure Production = F(val debug - false)

This style of code is frequently used in situations which would see the use of preprocessor
conditionals in C or C++:

[b] #ifdef DEBUG
printf("n = ,n",n);

#endif /* DEBUG */

However, no code is generated for [b] when the debugging flag is off. This is not true for [a],
at least using release 0.93 of the Standard ML of New Jersey compiler[l] (the most recent at the
time of writing). The code generated for the function f includes code to test the value debug
and to evaluate expression el or e2 accordingly. This disadvantage may become important when
Standard ML is considered for systems programming tasks, a goal of the Fox project[2].

The problem reduces to this: Standard ML has a way of expressing the opportunity for condi-
tional compilation, namely the use of functors with boolean arguments, but Standard ML compilers
do not currently perform any conditional compilation because of the manner in which they compile
functor declarations and applications. The compilation technique used is semantically correct but
generates inefficient code.

This note describes current Standard ML compilation techniques and explores possible coding
styles and compiler optimizations that may improve the situation. Work is also proceeding on
extending the Standard ML language in such a way as to enforce conditional compilation, but that
is outside the scope of this note.

2 Code Generation for Functors

The use of a functor in [a] to express conditional code suggests that the decision on which version
of the code to compile should be made at functor application time, when the flag debug is available.

'All code fragments in this note are identified by a single letter.

1



That is, the compilation of the structure declarations for Production and Debug should include
code generation for those structures.

Unfortunately, typical compiling techniques for Standard ML compile each functor declaration
as if it were a simple function taking a record argument. That is, functor F is compiled approxi-
mately as if it were this function:

[c] fun F {debug : bool, ... = .
f ffin a =>

if debug then el
else e2

When F is compiled, code is generated for f which obtains the value debug from the current
closure and tests it, evaluating el or e2 accordingly. The applications of F to create the structures
Debug and Production merely create a closure for f containing the value of debug.

Since functor application occurs in a very different context to function application (i.e., functor
applications are statically known), this compilation technique is not really suitable to the needs of
programmers. It would be more useful if the compiler kept some intermediate representation of the
functor (such as the abstract syntax) and generated code for the functor body at functor application
time. In general this would shift compilation time from functor evaluation to functor application,
equivalent in C to postponing optimization until link-time. A more sophisticated approach might
consider compiling functor declarations as partially evaluated structure declarations, and specialize
the evaluation at functor application time.

However, the Fox project's FoxNet software depends on currently available compilers, so we
need a coding style that is compatible with the current functor compilation technique.

3 Possible Coding Styles

Given the current techniques used for functor compilation, how can we rewrite our code to produce
the best runtime performance in functor bodies with conditional code?

Consider the example code [d], from our Ethernet driver testing and timing functor. The values
Debug.include-prints, Debug.do.prints and do-prints are all functor arguments. Note that
the conditional code here obscures the real purpose of the function generic-receive. Fragment
[e] is a version without any instrumentation.

Assuming that all the debugging arguments are false, the code executed for [d] will be very
similar to that for [e], except for either 2 or 3 boolean tests, depending on the path taken. Each
test will take 3 or 4 instructions, and if we have decided to take some handicap, this is not an
unacceptable one. But the code is very opaque. It can be trivially improved by combining two of
the flags (code fragment If]).

We can improve fragment [f] further by abstracting the instrumentation into a function (frag-
ment [g]). This is now much more legible than [d], but we have introduced function calls to
debug-append into the code. Function calls are usually more expensive than boolean tests because
of register saving; even a call to an empty function may take a dozen or more instructions. Also
this mechanism is not very general. It can be made more general, as shown in [h].

2



[d3 fun generic-receive from expected-data size history body p =

(if Debug.include.prints andalso do-prints
andalso ! Debug.do.prints

then history := "." :: ! history else 0;
if sent-from from p then

(if Debug.include.prints andalso do-prints
andalso ! Debug.do.prints

4 then history - "÷" :: !history else 0;
(if valid-data p size expected-data then

(if Debug.include.prints andalso do-prints
andalso ! Debug.do.prints

then history := "!" :: !history else 0;
body0)

else (* The message has invalid data. *)
(if Debug.include.prints andalso do-prints

andalso ! Debug.do.prints
then history := "?" :: !history else 0)))

else (* The message is not from the server.
(if Debug.include.prints andalso do-prints

andalso ! Debug.do.prints
then history :- "-" :: !history else 0))

[e] fun generic-receive from expected-data size history body p =

if sent-from from p
andalso valid-data p size expected-data

then body 0)
else ()

If] val static-print = Debug.include.prints andalso do-prints

fun generic-receive from expected-data size history body p =

(if static-print andalso ! Debug.do-prints
then history : ".' : history else 0;

[g] fun generic-receive from expected-data size history body p =
let

fun debug-append s =
if static-print andalso !Debug.do.prints -- 'oargloij For
then history :- s : history else C); .1.S '?A&I

in DTIC T A':

(debug-append "."; UnrT ýh . -.!

if sent.from from p then
(debug-append "4"1;

end DTIO QUAIZTY INSPECTED 3 Avr! ., 1 ,.

Dist • •ciai



[hi fun debug-action f arg - if static-print andalso !Debug.do.prints
then (f arg) else C)

fun generic-receive from expected-data size history body p =

let
val debug-append =

debug-action (fn s => history :- s ! history)

in
(debug-append ".";

if sent-from from p then
(debug-append "+";

end

The debug-action function can now be used around any instrumentation function call in the

functor body: a very general mechanism. However, in the case that the debugging switches are off,
we are now doing 3 or 4 function calls and 2 or 3 boolean tests each time we call generic-receive.

This is substantially worse than in our original code, and seems an expensive price to pay. We can
remove the boolean tests easily enough:

Ci] val debug-action - if static-print then

(fn f => (fn arg => if :Debug.do-prints
then (f arg)
else C)))

else (fn_ => (fn - -> ()))

generic..receive now only has an overhead of 3 or 4 function calls. If we uncurry debug-action
we can reduce that by one, at the cost of some legibility in the body of generic-receive.

Note that this final version, [i], is crucially different from its predecessors in that it evaluates

a condition at functor-application time. This difference, caused by "hoisting" the condition up
through the surrounding lambdas, suggests the following solution to our problem:

[j] local
fun generic.receive.opt from expected-data size history body p =

if sent-from from p
andalso valid-data p size expected-data

then body C)
else 0)

fun generic.receive.debug from expected-data size history body p =

(if ! Debug.do.prints
then history :a "." :: ! history else C);

in

val generic.receive = if static.print

then generic.receive.debug
else generic.receive.opt

end

4



This code fragment expresses perfectly our intention: that the functor application should test
the static-print flag and create a function generic-receive accordingly. However, it is very bad
from the point of view of code modifications; there is no guarantee that generic-receive.opt and
generic-receive-debug are equivalent, and therefore differences will inevitably arise in code like
this when code is modified.

This code also incurs a space overhead under SML/NJ. The code generated for both functions
generic-receive-opt and generic.receive-debug, will be placed in a s:ngle indivisible code
object on the heap. Even if the functor is applied only once, the codes for both functions will
remain 'live data' on the heap, since they both lie in the 'live' code object.

4 Possible Compiler Optimizations

The various code structures in section 3 are attempts to work around a problem which can be
viewed as a failure in the compiler. Functor applications are static (in the sense that there is a
finite number of them in the compilation of any piece of Standard ML, determined only by the
number of occurrences of the functor-application syntax), and so the compiler should apply all the
means at its disposal to optimize functor application. This is similar to the argument for link-time
optimization of C or other languages, and the effect is similar: cross-module optimization. As
discussed in section 2, such an implementation of functors is certainly possible.

Short of a major re-implementation of functors, what improvements can be made to the compiler
to improve the compilation of conditional code?

The most obvious possibility is to introduce condition-hoisting, to change code [d] to code
01 automatically. This is akin to the techniques used in 'binding-time improvement' in partial
evaluators[3, Chapter 12]. The case of interest to us is a static if expression inside a function
declaration. In the Bare language, this has the following form:

fn match, where match contains the subexpression el:
e: (fn true -> e2 I false => e3) (v)
and v is a var free in match.

We transform this into:

(fn true -> (fn match [e2/eil])
I false a> (fn match [e3/el])) (v)

This transformation is in effect already performed outside of functors by constant-folding;
adding it only affects functors by making this limited form of constant-folding explicit so that
it can be carried out at functor-application time. Note that the transformation could lead to code
size explosion (but in typical codes will not), and can be governed by heuristics based on the sizes
of match, e2 and e3. If either e2 or e3 is a trivial expression (such as 0), this transformation is a
significant improvement for that side of the resulting expression.

We can generalize this transformation in two ways. Firstly if v is a general expression, the
transformation can still be applied if the compiler can determine that the value of v cannot change
after the (fn match) expression is evaluated. This is a property of expressions which can be
useful to the compiler in other contexts (outside of functors, it indicates a value which can be
computed at compile-time), so determining it for v does not present additional difficulty. Secondly
the transformation can be generalized to types of v other than bool.



Note that the code style preferred in section 3 (as shown in code fragment [i]) will not benefit
from this transformation. Indeed, adopting code style [i] will reduce efficiency in the presence of
this transformation, since the function-call overhead will not be eliminated.

5 Our Decision

We have decided to use a code style which expresses our intention clearly, such as this:

[k] functor F (val debug :bool

struct

val f i if debug then fn a =>
else fn a =>

end

This code is ready for an improved compiler that optimizes at functor application time. It will
not benefit from minor improvements to the compiler, such as a condition-hoisting transformation.
The software-engineering risk of writing several versions of many functions is removed by using this
general construct:

[1] val debug-action = if static-debug then
(fn (f,arg) -> if !dynamic-debug

then (f arg)
else 0)

else (fn - u> 0)

The debug-action function is then wrapped around any instrumentation code. It is not curried
because SML/NJ doesn't optimize away the currying of functions.



6 Conclusions

In conclusion,

" Conditional code is supported in many other languages, such as C, C++, Modula-3 and
Common Lisp, either by use of macros or by constant-folding if structures. Conditional
code is required for code instrumentation or for ready portability.

" Standard ML supports conditional code through the use of functors taking switches as argu-
ments. This technique is very natural, and similar to the Modula-3 GENERIC style of modular
programming.

" Current Standard ML compilers do not efficiently compile instantiations of functors which
include conditional code. They must do so if Standard ML is to have comparable speed to
other languages used in systems programming.

"* Code generation at functor application time is the most natural way to achieve this efficiency.

"* There is a code transformation (presented in section 4) which achieves this efficiency in some
cases, and should be simple to add to a Standard ML compiler. This transformation requires
conditional code to be written in a particular style.

" We have chosen a code style which makes the most of current compilation techniques and
will also take advantage of a compiler which generates code at functor application time. This
style will not be optimized by the described code transformation.

References

[1] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In J. Maluszynski and
M. Wirsing, editors, Third Int'l ,,,mp. on Prog. Lang. Implementation and Logic Programming,
pages 1-13, New York, August 1991. Springer-Verlag.

[2] Eric Cooper, Robert Harper, and Peter Lee. The Fox Project: Advanced development of
systems software. Technical Report CMU-CS-91-178, School of Computer Science, Carnegie
Mellon University, August 1991.

[3] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice-Hall International, 1993.

[4] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press, 1990.

7


